Math 2130 - Homework # 5 Double Integrals

Part 1 - Integrals over rectangles

1. Evaluate the following integrals:

(a)
$$\int_{1}^{3} \int_{0}^{1} (1+4xy) dx dy$$

(b)
$$\int_0^2 \int_0^{\pi/2} x \sin(y) \, dy \, dx$$

Part 2 - Integrals over general regions

- 2. Calculate $\iint_D (x^2 + 3y^2) dA$ where D is is the region in the xy-plane bounded between x = 0, y = 1, and y = x.
- 3. Calculate $\iint_D x \, dA$ where D is is the region in the xy-plane bounded between x = 0, y = x, and x + y = 2.
- 4. Calculate $\iint_D 5 dA$ where D is is the region in the xy-plane bounded between $y=x^2$ and $y=2-x^2$.
- 5. Calculate $\iint_D (x^2 + y^2) dA$ where D is is the region in the xy-plane bounded between $x = y^2$ and x = 9.

Part 3 - Integrals using polar coordinates

- 6. Draw a picture of the region D in the xy-plane that satisfies $1 \le r \le 2$ and $\pi/2 \le \theta \le 3\pi/2$.
- 7. Find the volume of the solid that lies beneath the paraboloid $z = 9 x^2 y^2$ and above the xy-plane.
- 8. Find the volume of the solid that lies below the z=9 plane and above the paraboloid $z=x^2+y^2$.
- 9. Find the volume of the solid that lies between the paraboloids $z = x^2 + y^2$ and $z = 2 x^2 y^2$.
- 10. Calculate

$$\iint_D e^{-x^2-y^2} dA$$

where R consists of all (x, y) satisfying $x^2 + y^2 \le 9$ and $y \le 0$.